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This paper examines the callgraphs of 120 malicious
and 280 non-malicious executables. Pareto models
were fitted to in-degree, out-degree and basic block
count distribution, and a statistically significant differ-
ence shown for the derived power law exponent. A two-
step optimization process is hypothesized to account
for structural features of the executable.
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1. Motivation

All commercial antivirus (AV) products rely on
signature matching; the bulk of which constitutes
strict byte sequence pattern matching. For mod-
ern, evolving polymorphic and metamorphic mal-
ware, this approach is unsatifactory. Clementi re-
cently checked fifteen state-of-the-art, updated AV
scanner against ten highly polymorphic malware
samples and found false negative rates from 0-
90%, with an average of 48% [5]. This develop-
ment was already predicted in 2001 [29]. Polymor-
phic malware contain decryption routines which
decrypt encrypted constant parts of the mal-
ware body. The malware can mutate its decryp-
tors in subsequent generations, thereby complicat-
ing signature-based detection approaches. The de-
crypted body, however, remains constant. Meta-
morphic malware generally do not use encryp-
tion, but are able to mutate their body in sub-
sequent generation using various techniques, such
as junk insertion, semantic NOPs, code transposi-
tion, equivalent instruction substitution and reg-
ister reassignments [4][27]. The net result of these
techniques is a shrinking usable “constant base”
for strict signature-based detection approaches.

Since signature-based approaches are quite fast
(but show little tolerance for metamorphic and

polymorphic code) and heuristics such as emula-
tion are more resilient (but quite slow and may
hinge on environmental triggers), a detection ap-
proach that combines the best of both worlds
would be desirable. This is the philosophy behind
a structural fingerprint. Structural fingerprints are
statistical in nature, and as such are positioned as
‘fuzzier’ metrics between static signatures and dy-
namic heuristics. The structural fingerprint inves-
tigated in this paper for differentiation purposes is
based on some properties of the executable’s call-
graph. I also propose a generative mechanism for
the callgraph topology.

2. Generating the callgraph

Primary tools used are described in more details
in the appendix.

2.1. Samples

For non-malicious software, henceforth called
‘goodware’, sampling followed a two-step process:
I inventoried all PEs (the primary 32-bit Windows
file format) on a Microsoft XP Home SP2 lap-
top, extracted uniform randomly 300 samples, dis-
carded overly large and small files, yielding 280
samples. For malicious software (malware), seven
classes of interest were fixed: backdoor, hacking
tools, DoS, trojans, exploits, virus, and worms.
The worm class was further divided into Peer-
to-Peer (P2P), Internet Relay Chat/Instant Mes-
senger (IRC/IM), Email and Network worm sub-
classes. For an non-specialist introduction to ma-
licious software, see [26]; for a canonical reference,
see [28]. Each class (subclass) contained at least
15 samples. Since AV vendors were hesitant for
liability reasons to provide samples, I gathered
them from herm1t’s (underground) collection and
identified compiler and (potential) packer meta-
data using PEiD. Practically all malware samples
were identified as having been compiled by MS
C++ 5.0/6.0, MS Visual Basic 5.0/6.0 or LCC,
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(a) Example: Callgraph (b) Example: Control Flow Graph
(CFG)

(c) Example: Basic Block

Fig. 1. Graph structures of an executable

and about a dozen samples were packed with var-
ious versions of UPX (an executable compres-
sion program). Malware was run through best-of-
breed, updated open- and closed-source AV prod-
ucts yielding a false negative rate of 32% (open-
source) and 2% (closed-source), respectively. Over-
all file sizes for both mal- and goodware ranged
from Θ(10kb) to Θ(1MB). A preliminary file size
distribution investigation yielded a log-normal dis-
tribution; for a putative explanation of the un-
derlying generative process, see [19] and [16]. All
400 samples were loaded into the de-facto indus-
try standard disassembler (IDA Pro [12]), inter-
and intra-procedurally parsed and augmented with
symbolic meta-information gleaned programmati-
cally from the binary via FLIRT signatures (when
applicable). I exported the identified structures ex-
ported via IDAPython into a MySQL database.
These structures were subsequently parsed by a
disassembly visualization tool (BinNavi [6]) to gen-
erate and investigate the callgraph.

2.2. Callgraph

Following [7], we treat an executable as a graph
of graphs. This follows the intuition that in any
procedural language, the source code is structured
into functions (which can be viewed as a flowchart,
e.g. a directed graph which we call flowgraph).
These functions call each other, thus creating a
larger graph where each node is a function and the
edges are calls-to relations between the functions.
We call this larger graph the callgraph. We re-
cover this structure by diassembling the executable
into individual instructions. We distinguish be-
tween short and far branch instructions: Short
branches do not save a return address while far
branches do. Intuitively, short branches are nor-

mally used to pass control around within one func-
tion of the program, while far branches are used
to call other functions. A sequence of instructions
that is continuous (e.g. has no branches jumping
into its middle and ends at a branch instruction) is
called a basic block. We consider the graph formed
by having each basic block as a node, and each
short branch an edge. The connected components
in this directed graph correspond to the flowgraphs
of the functions in the source code. For each con-
nected component in the previous graph, we cre-
ate a node in the callgraph. For each far branch
in the connected component, we add an edge to
the node corresponding to the connected compo-
nent this branch is targeting. Fig. 1 illustrate these
concepts.

Formally, denote a callgraph CG as CG =
G(V, E), where G(·) stands for ‘Graph’. Let V =⋃

F , where F ∈ normal, import, library, thunk.
This just says that each function in CG is either a
‘library’ function (from an external libraries stati-
cally linked in), an ‘import’ function (dynamically
imported from a dynamic library), a ‘thunk’ func-
tion (mostly one-line wrapper functions used for
calling convention or type conversion) or a ‘nor-
mal’ function (can be viewed as the executables
own function). Following metrics were program-
matically collected from CG

– |V | is number of nodes in CG, i.e the function
count of the callgraph

– For any f ∈ V , let f = G(Vf , Ef ) where b ∈
Vf is a block of code, i.e each node in the
callgraph is itself a graph, a flowgraph, and
each node on the flowgraph is a basic block

– Define IC : B → N where B is defined to be
set of blocks of code, and IC(b) is the number
of instructions in b. We denote this function
shorthand as |b|IC , the number of instructions
in basic block b.
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– We extend this notation | · |IC to elements of
V be defining |f |IC =

∑
b∈Vf

|b|IC . This gives
us the total number of instructions in a node
of the callgraph, i.e in a function.

– Let d+
G(f), d−G(f) and dbb

G (f) denote the in-
degree, outdegree and basic block count of a
function, respectively.
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Fig. 2. Correlation Coefficient rin,out

2.3. Correlations

I calculated the correlation between in and
outdegree of functions. Prior analysis of static
class collaboration networks [24][21] suggest an
anti-correlation, characterizing some functions as
source or sinks. I found no significant correlation
between in and outdegree of functions in the dis-
assembled executables (Fig. 2). Correlation intu-
itively is unlikely to occur except in the ‘0 out-
degree’ case (the BinNavi toolset does not gen-

class metric Θ(10) Θ(100) Θ(1000)

Goodware r 0.05 -0.017 -0.0366

IQR 12 44 36

Malware r 0.08 0.0025 0.0317

IQR 8 45 28

Table 1

Correlation, IQR for instruction count

erate the flowgraph for imported functions, i.e.
an imported function automatically has outde-
gree 0, and but will be called from many other
functions). Additional, I size-blocked both sample
groups into three function count blocks, with block
criteria chosen as Θ(10), Θ(100) and Θ(1000) func-
tion counts to investigate a correlation between
instruction count in functions and complexity of
the executable (with function count as a proxy).
Again, I found no correlation at significance level
≤ 0.001. Coefficient values and the IQR for in-
struction counts (a spread measure, the difference
between the 75th and the 25th percentiles of the
sample) are given in Table 1. The first result cor-
roborate previous findings; the second result at the
phenomenological level agrees with the ‘refactor-
ing’ model in [21], which posits that excessively
long functions that tend to be decomposed into
smaller functions. Remarkably, the spread is quite
low, on the order of a few dozen instructions. I will
discuss models more in section 4.

2.4. Function types

Each point in the scatterplots in Fig. 3 repre-
sents three metrics for one individual executable:
Function count, and the proportions of normal
function, static library + dynamic import func-
tions, and thunks. Proportions for an individual
executable add up to 1. The four subgraphs are
parsed thusly, using Fig. 3(b) as an example. The
x-axis denotes the proportion of ‘normal’ function,
and the y-axis the proportion of “thunk” func-
tions in the binaries. The color of each point in-
dicates |V |, which may serve as a rough proxy
for the executable’s size. The dark red point at
(X, Y )= (0.87, 0.007) is endnote.exe, since it
is the only goodware binary with functions count
of Θ(104).

Most thunks are wrappers around imports,
hence in small executables, a larger proportion of
the functions will be thunks. The same holds for li-
braries: The larger the executable, the smaller the
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(e) MW:Norm vs Thunk
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Fig. 3. Scatterplot of function type proportions

percentage of libraries. This is heavily influenced
by the choice of dynamic vs. static linking. The
thunk/library plot, listed for completeness reasons,
does not give much information, confirming the in-
tuition that they are independent of each other,
mostly due to compiler behavior.

2.5. α fitting with Hill estimator

Taking my cue from [23] who surveyed empirical
studies of technological, social, and biological net-
works, I hypothesize that the discrete distributions
of d+(f), d−(f) and dbb(f) follows a truncated
powerlaw of the form Pd?(f)(m) ∼ mαd?(f)e−

m
kc ,

where kc indicates the end of the power law regime.
Shorthand, I call αd?(f) for the respective metrics
αindeg, αoutdeg and αbb.

Figs. 4(a) and 4(b) show pars pro toto the fit-
ting procedures for our 400 samples. The plot is
an Empirical Complimentary Cumulative Density
Plot (ECCDF). The x-axis show indegree, the y-
axis show the CDF P[X>x] that a function in
endote.exe has indegree of x. If P[X>x] can be
shown to fit a Pareto distribution, we can ex-

tract the power law exponent for PMF Pd?(f)(m)
from the CDF fit (see [1] and more extensively
[22] for the relationship between Pareto, power
laws and Zipf distributions). Parsing Fig. 4(a)):
Blue points denotes the data points (functions)
and two descriptive statistics (median and the
maximum value) for the indegree distribution for
endote.exe. We see that for endnote.exe, 80%
of functions have a indegree=1, 2% indegree >10.
and roughly 1% indegree > 20. The fitted dis-
tribution is shown in magenta, together with the
parameters α = 1.97 and kc = 1415.83. Al-
though tempting, simply ‘eyeballing’ Pareto CDFs
for the requisite linearity on a log-log scale [11]
is not enough: Following [19] on philosophy and
[25] on methodology, I calculate the Hill estima-
tor α̂ whose asymptotical normality is then used
to compute a 95% CI. This is shown in the inset
and serves as a Pareto model self-consistency check
that estimates the parameter α as a function of the
number of observations. As the number of obser-
vations i increase, a model that is consistent along
the data should show roughly CIi ⊇ CIi+1. For
an insightful exposé and more recent procedures
to estimate Pareto tails, see [33][8].
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inset

To tentatively corroborate the consistency of
our posited Pareto model, 30 (goodware) and 21
(malware) indegree, outdegree and basic block EC-
CDF plots were uniformly sampled into three func-
tion count blocks, with block criteria chosen as
Θ(10), Θ(100) and Θ(1000) function counts, yield-
ing a sampling coverage of 10 %(goodware) and
17%(malware). Visual inspection indicates that for
malware, the model seemed more consistent for
outdegree than indegree at all function sizes. For
basic block count, the consistency tends to be bet-
ter for smaller executables. I see these tendency for
goodware, as well, with the observation that out-
degree was most consistent in size block Θ(100);
for Θ(10) and Θ(1000). For both malware and
goodware, indegree seemed the least consistent,
quite a few samples did exhibit a so-called ‘Hill

class Basic Block Indegree Outdegree

GW N(1.634,0.3) N(2.02, 0.3) N(1.69,0.307)

MW N(1.7,0.3) N(2.08,0.45) N (1.68,0.35)

t 2.57 1.04 -0.47

Table 2

α distribution fitting and testing

Horror Plot’ [25], where α̂s and the corresponding
CIs were very jittery.

The fitted power-law exponents αindeg, αoutdeg,
αbb, together with individual functions’ callgraph
size are shown Fig. 5. For both classes, the range
extends for αindeg ≈ [1.5-3], αoutdeg ≈ [1.1-2.5] and
αbb ≈ [1.1-2.1], with a slightly greater spread for
malware.

2.6. Testing for difference

I now check whether there are any statistically
significant differences between (α, kc) fit for good-
ware and malware, respectively. Following proce-
dures in [34], I find αindeg, αoutdeg and αbb dis-
tributed approximately normal. The exponential
cutoff parameters kc are lognormally distributed.
Applying a standard two-tailed t-test (Table 2), I
find at significance level 0.05 (tcritical=1.97) only
µ(αbb,malware) ≥ µ(αbb,goodware).

For the basic blocks, kc ≈ LogN(59.1, 52)
(goodware) and ≈ LogN(54.2, 44) (malware) and
µ(kc(bb,malware)) = µ(kc(bb, goodware)) was re-
jected via Wilcoxon Rank Sum with z = 13.4.
The steeper slope of malware’s αbb imply that
functions in malware tend to have a lower basic
block count. This can be accounted for by the fact
that malware tends to be simpler than most ap-
plications and operates without much interaction,
hence fewer branches, hence fewer basic blocks.
Malware tends to have limited functionality, and
operate independently of input from user and the
operating environment. Also, malware is usually
not compiled with aggressive compiler optimiza-
tion settings. Such a regime leads to more inlin-
ing and thus increases the basic block count of the
individual functions. It may be possible, too, that
malware authors tend to break functions into sim-
pler components than ‘regular’ programmers. The
smaller cutoff point for malware seems to corrob-
orate this, as well, in that the power law relation-
ship holds over a shorter range. However, this ex-
planation should be regarded as speculative pend-
ing further investigation.
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Fig. 5. Scatterplots of α’s

3. Related work

A simple but effective graph-based signature set
to characterize statically disassembled binaries was
proposed by Flake [9]. For the purposes of similar-
ity analysis, he assigned to each function a 3-tuple
consisting of basic blocks count, count of branches,
and count of calls. These sets were used to compare
malware variants and localize changes; an in-depth
discussion of the involved procedures can be found
in [7]. For the purposes of worm detection, Kruegel
[14] extracts control flow graphs from executable
code in network streams, augments them with a
colouring scheme, identifies k-connected subgraphs
that are subsequently used as structural finger-
prints.

Power-law relationships were reported in [30]
[21] [31] [3]. Valverde et al [30][31] measured undi-
rected graph properties of static class relation-
ships for Java Development Framework 1.2 and
a racing computer game, ProRally 2002. They
found the αJDK ≈ 2.5 − 2.65 for the two largest
(N1=1376, N2=1364) connected components and
αgame ≈ 2.85 ± 1.1 for the game (N=1989).

In the context of studying time series evolution
of C/C++ compile-time “#include” dependency
graphs, αin ≈ 0.97− 1.22 and an exponential out-
degree distribution are reported. This asymmetry
is not explained. Focusing on the properties of di-
rected graphs, Potanin et al [24] examined the bi-
nary heap during execution and took a snapshot
of 60 graphs from 35 programs written in Java,
Self, C++ and Lisp. They concluded that the dis-
tributions of incoming and outgoing object refer-
ences followed a power law with αin ≈ 2.5 and
αout ≈ 3. Myers [21] embarked on an extensive and
careful analysis of six large collaboration networks
(three C++ static class diagrams and three C call-
graphs) and collected data on in/outdegree distri-
bution, degree correlation, clustering and complex-
ity evolution of individual classes through time.
He found roughly similar results for the callgraphs,
αin ≈ αin ≈ 2.5, and noted that it was more likely
to find a function with many incoming links than
outgoing ones. More recently, Chatzigeorgiou et al
[3] applied algebraic methods to identify, among
other structures, heavily loaded ‘manager’ classes
with high in- and outdegree in three static OO
class graphs.
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(a) Compiler: CFG without loop unrolling (b) Compiler: CFG with loop unrolling

Fig. 6. Basic Block differences in CFG under compiler optimization regimes

4. A HOT Process

I hypothesize that the call-graph features de-
scribed in the preceding sections may be the phe-
nomenological signature of two distinct, domain-
specific HOT (Highly Optimized Tolerance) opti-
mization processes; one involving human designers
and the other, code compilers. HOT mechanisms
are processes that induce highly structured, com-
plex systems (like a binary executable) through
processes that seek to optimally allocate resources
to limit event losses in an probabilistic environ-
ment [2].

4.1. Human design and coding as HOT
mechanism

The first domain-specific mechanism that in-
duces a cost-optimized, resource-constrained struc-
ture on the executable is the human element. Hu-
mans using various best-practice software devel-
opment techniques [15][10] have to juggle at vari-
ous stage of the design and coding stages: Evolv-
ability vs specificity of the system, functionality vs
code size, source readability vs development time,
debugging time vs time-to-market, just to name
a few conflicting objective function and resource
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constraints. Humans design and implement pro-
grams against a set of constraints, taking implic-
itly (rarely explicitly) the probability of the event
space into consideration, indirectly through the
choice of programming language (typed, OO, pro-
cedural, functional etc) and directly through the
design choice of data structures and control flow.
Human programmers generally design for average
(or even optimal) operating environments; the re-
sulting programs deal very badly with exceptional
conditions effected by random inputs [18][17] and
resource scarcity [32]. These findings are consis-
tent with an optimization-based code generation
process.

4.2. Compiler as HOT mechanism

The second domain-specific mechanism that in-
duces a cost-optimized, resource-constrained struc-
ture on the executable is the compiler. The com-
piler functions as a HOT process. Cost function
here include memory footprint, execution cycles,
and power consumption minimization, whereas the
constraints typically involves register and cache
line allocation, opcode sequence selection, num-
ber/stages of pipelines, ALU and FPU utilization.
The interactions between at least 40+ optimiza-
tion mechanisms (in itself a network graph [20,
pp.326+]) are so complex that meta-optimization
[13] have been developed to heuristically choose a
subset from the bewildering possibilities. Although
the callgraph is largely invariant under most opti-
mization regimes, the more aggressive mechanisms
can have a marked effect on callgraph structure.
Fig. 6(a) shows a binary’s CFG induced by the
Intel C++ Compiler 9.1 under a standard opti-
mization regime. The yellow section are loop struc-
tures. Fig. 6(b) shows the binary CFG of the same
source code, but compiled under a more aggres-
sive inlining regime. We see that the compiler
unrolled the loops into an assortment of switch
statements, vastly increasing the number of basic
blocks, and hence changing the executable’s struc-
tural features.

5. Conclusion

I started by analyzing the callgraph structure
of 120 malicious and 280 non-malicious executa-
bles, extracting descriptive graph metrics to assess

whether statistically relevant differences could be
found. Malware tends to have a lower basic block
count, implying a simpler structure (less interac-
tion, fewer branches, limited functionality). The
metrics under investigation were fitted relatively
successfully to a Pareto model. The power-laws ev-
idenced in the binary call-graph structure may be
the result of optimization processes which take ob-
jective function tradeoffs and resource constraints
into account. In the case of the callgraph, the pri-
mary optimizer is the human designer, although
under aggressive optimization regimes, the com-
piler will alter the callgraph, as well.

Appendix

The goodware samples were indexed, collected
and meta-data identified using Index Your Files
- Revolution! 3.1, Advanced Data Catalog 1.51
and PEiD 0.94, all freely available from www.
softpedia.com. The executable’s callgraph gener-
ation and structural identification was done with
IDA Pro 5 and a pre-release of BinNavi 1.2, both
commercially available at www.datarescue.com
and www.sabre-security.com. Programming was
done with Python 2.4, freely available at www.
python.org. Graphs generated with and some an-
alytical tools provided by Matlab 7.3, commer-
cially available at www.matlab.com.
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